

AD-A092 536

	REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
	AFOSR-TR- 30 - 1180 / / D- A 192	536	
OX,	A CHARACTERIZATION OF A POLYA ECGENBERGER AND OTHER DISCRETE DISTRIBUTIONS BY RECORD VALUES	5. TYPE OF REPORT & PERIOD COVERED Interim 6. PERFORMING ORG, REPORT NUMBER	
	7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(s)	
	Ramesh M. Korwar	AFOSR 80-0219 - New	
	The University of Massachusetts Department of Mathematics and Statistics Amherst, Massachusetts 01003	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2304/A5	
	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
9	Air Force Office of Scientific Research / M Bolling AFB, Washington, DC 20332	September 1980 /	
9	14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)	
35	•	UNCLASSIFIED 15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
	6. DISTRIBUTION STATEMENT (at this Report)		
60	Approved for public release; distribution unlimited		
A (DTIC	
AD	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) LEC 0 5 1980		
	18. SUPPLEMENTARY NOTES	E	
	19 KEY WORDS (Continue on reverse side if necessary and identify by block number)		
	Characterization Linear Discrete distributions Polya	r regression Eggenberger I Values	
		hote: all 17 - print su	
E COPY	Let X_1 , X_2 ,, be a sequence of independent and identifically distributed discrete random variables. Define the sequence $N(n)$ by $N(1)=1$, $N(n)=\min\{j \mid j \mid N(n-1), X_j \mid X_N(n-1)\}$, $n=2,3,\ldots$ Let $R_n=X_N(n)$. Then R_n is the sequence of record values. By convention $R_n=X_n$. Here a characterization of a Polya Eggenberger and other discrete distributions including the geometric polyage of the sequence of R_n .		
	metric, is made by the linearity of regression	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wien Data Entered)

18) AFOSR-TR-8,0 - 1180

11) 2 3 13

6

CHARACTERIZATION OF A

POLYA-DIGGERBURGER AND CTHER DISCRETE DISTRIBUTIONS

BY RECORD VALUES.

Ramesh M./Korwar*

AFCSR Technical Report, 10.8

MITTER

13) MFO F- 18-8219

(16) 23 A4

(17) A 5 /

NTIS GRAZI
DDC TAB
Unamnounced
Justification

Distribution/

Dist | or

September, 1980

The University of Massachusetts
Department of Mathematics and Statistics
Amherst, Massachusetts

*Research sponsored by the Air Force Office of Ocientific Research, AND, ULLA, under Grant ATCSR-60-3219.

80 12 01 019

intuition multiplied.

A Characterization of a Polya-Eggerberger and Other Discrete Distributions by Record Values

Ramesh M. Korwar University of Passachusetts

Abstract

Let X_1, X_2, \ldots , be a sequence of independent and identically distributed discrete random variables. Define the sequence - n(n) by n(1)=1, $N(n)=\min$ $N_1 > N(n-1)$, $N_2 > N_1(n-1)$, n=2, Let $R_1=X_1$. Then R_n is the sequence of record values. By convention $R_1=X_1$. Here a characterization of a Polya-aggenberger and other discrete distributions including the geometric, is made by the linearity of repression of $R_2=R_1$ on R_1 .

AIN F DIE OFFICE OF COUNTIFIC RESEARCH (AFSC)

No office of the Following reviewed and is

Office of the Following revi

A CHARACTERIZATION OF A

POLYA-EGGENBERGER AND OTHER DISCRETE
DISTRIBUTIONS BY RECORD VALUES 1

bу

R M KORWAR
Indian Statistical Institute
and
University of Massachusetts

SUMMARY. Let X_1, X_2, \ldots , be a sequence of independent and identically distributed discrete random variables. Define the sequence $\{N(n)\}$ by N(1)=1, $N(n)=\min\{j,j>N(n-1),X_j>X_N(n-1)\}$, $n=2,7,\ldots$ Let $R_n=X_N(n)$. Then $\{R_n\}$ is the sequence of record values. By convention $R_1=X_1$. Here a characterization of a Polya-Eggenberger and other discrete distributions including the geometric is made by the linearity of regression of R_2-R_1 on R_1 .

Consider a sequence X, X₁, X₂,... of independent and identically distributed (i.i.d.) discrete random variables (r.v.) with

$$P(X=j) = p_i, j=0,...,m$$
 (1)

Here m is either a positive integer or ∞ . Define N(1)=1, $N(n)=\min \left\{ \int_{-\infty}^{\infty} N(n-1), X > X_{N(n-1)} \right\}$, $n=2,3,\ldots$, $R_1=X_1$ and $R_n=X_{N(n)}$, $n=2,7,\ldots$. Then $\left\{ R_n \right\}$ is the sequence of record values and $\left\{ N(n) \right\}$ the sequence of times at which record values occur.

In this note we characterize the gemetric, a Polya-Eggenberger and a generalized hypergeometric distribution by linearity of regression of R_2-R_1 on R_1 . Thus the

Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR-80-0219.

characterization given here extends Theorem 2 of Srivastava (1979) characterizing the geometric by the constancy of regression of R_2 - R_1 on R_1 .

Consider for X one of the following distributions.

$$p_{j}=(1-p_{0}) c \{1-c\}^{j-1}, j=1,2,...,$$
 (2)
 $0 < c < 1.$

$$p_{j} = (1-p_{j})^{\binom{a}{j-1}} \binom{\binom{b}{n-j+1}}{\binom{a+b}{n}}, j=1,..., n+1,$$

$$a < 0; n > 0; n integral; n-b-1 > 0; b < 0, t \neq -1.$$
(3)

and

$$p_{j} = (1-p_{o}) \binom{a}{j-1} \binom{b}{n-j+1} / \binom{a+b}{n}, j=1,2,...,$$

$$a < o; n < o; n-b-1 < o; a+b+1 > o.$$
(5a)

Distribution (2) is a geometric distribution, (7) and (3a) are versions of generalized hypergeometric distribution; Type 2A and Type IV, as described by Kemp and Kemp (1956). For a=-1, (7) can be recast as

$$p_{j} = (1-p_{0}) \begin{pmatrix} n \\ j-1 \end{pmatrix} \underbrace{A(A+s), ..., (A+j-2s)}_{A(A+s), ..., (A+j-2s)} \Im(B+s), ..., (B+n-(j-1)-1s)$$

$$(A+3) (A+3+s), ..., (A+B+n-1s)$$

$$j=1, ..., n+1$$
(35)

with A=1, B=-b, s=1. An example of a Polya-Lg_enberger distribution is (3b).

We are now ready to prove the

Theorem: Suppose X takes on only the values o,...,m with positive probabilities and assume that X has a finite expectation. Then

$$E(R_2-R_1 \mid R_1=i) = \alpha+i\beta$$
 a.s.
 α,β Constants (4)
 $i=0,...,m-1$

if, and only if, X has either the geometric (2), or a Polya-Eggenberger (3b) with A=1 and s=1, or a generalized hypergeometric distribution (3a) with a=-1. Furthermore, β =0 iff X is geometric (2), β <0, β =1 iff X is (3b) with A=1, s=1 and β >0 iff X is (3a) with a=-1.

Proof: First consider the ''only if'' part. Suppose (4) holds. Now it is shown in Srivastava (1979) that

$$E(R_2-R_1/R_1=i) = \sum_{j=1}^{m-i} p_{i+j} / \sum_{j=i+1}^{m} p_j$$
, $i=0,...,m-1$

Thus it follows that

$$\sum_{j=1}^{m-i} j p_{i+j} = (\alpha+i\beta) \stackrel{\text{if}}{\geq} p_j$$

$$j = i+1 \qquad p_j$$
(5)

and

$$\sum_{j=1}^{m-i-1} j p_{i+j+1} = (\alpha + \overline{1+1} \beta) \sum_{j=i+2}^{m} p_{j}$$
 (6)

Subtracting (6) from (5) we have

$$(1+\beta) \sum_{j=i+1}^{m} p_j = (\alpha + \overline{i+1} \beta) p_{i+1}$$

$$(7)$$

Replacing i by (i+1) in (7) and substracting the result from (7), we finally obtain

 $p_{i+2} / p_{i+1} = (\alpha + \beta i - 1) / \{ \alpha + \beta (i+2) \}$, i=0, l,...m-2. This last result and (7) yield

$$p_{j}=p_{1} \frac{(\alpha-1) \cdot \cdot \cdot (\alpha+j-2\beta-1)}{(\alpha+2\beta) \cdot \cdot \cdot \cdot (\alpha+j\beta)}$$

$$i=1,\ldots,p_{\alpha}$$
(8)

and

$$p_1 = (1+\beta) (1-p_0) / (\alpha+\beta).$$
 (9)

From (4) it follows that

$$\alpha \geqslant 1$$
 (10)

We consider three cases (i) $\beta=0$, (ii) $\beta<0$ and (iii) $\beta>0$. The case $\beta=0$ is already considered by Srivastava (1979). His result is included in (8) and specializing for $\beta=0$, (8) and (9) give (2) with $c=1/\alpha$.

Next consider the cases $\beta \neq 0$. Now, from (4), it follows that

$$\beta \leqslant 0$$
 if, and only if, X is bounded (11)

If
$$\beta < 0$$
 then $\alpha+\beta(m-1)=1$ (12)

We obtain (12) from (4) by *pecilizing i=m-1. From (8) and (9) it is clear that β =-1 leads to the degeneracy of X at 0, a contradition of the assumption of m being a positive integer. For the cases $\beta \neq 0$ (8) can be recast as

$$p_{j}=p_{1} \begin{cases} \lambda^{j-1} & [j-1] \\ \lambda^{j-1} & B \end{cases} / \begin{bmatrix} j-1 \\ C \end{bmatrix} (j-1)! \begin{cases} j-1 \\ j-1 \end{cases} , j=1,...m$$
 (13)

[j] where x is the ascening factorial,

[j]

$$x = x (x+1)...(x+j-1), j=1, 2,..., x =1;$$

p₁ is given by (9) and

$$A=(\alpha-1)/\beta$$
 B=1, and $C=\alpha/\beta+2$. (14)

The product in the curled brackets in (13) is the coefficient of z^{j-1} in the hypergeometric function

$$F(A;B;C;Z) = \sum_{j=0}^{\infty} \left\{ \begin{bmatrix} j \end{bmatrix} \begin{bmatrix} j \end{bmatrix} / \begin{bmatrix} j \end{bmatrix} \right\} Z^{j}.$$

Thus (13) is the generalized hypergeometric distribution (3) (or 3(a)) with

$$a=-1$$
, $b=1+1/\beta$, $n=-(\alpha-1)/\beta$ (15)

First suppose $\beta < 0$. Then, from (12) and (15) we have that n=m-1, and if m/2, from (9), that b(0). Obviously, n-b-1/0 for m/2. Thus, for the case $\beta < 0$, $\beta \neq 1$ and m/2 we have a generalized hypergeometric distribution (3) with parameters a=-1, $b=1+1/\beta$ and n=m-1. This distribution is also a Polya-Eggenberge distribution (3b) with parameter A=1, $B=-1/\beta$, n=m-1 and s=1. However, (4) will not lead to any particular distribution if m=1.

Finally assume β 0. From (15), we have that X has the generalized hypergemetric distribution (3a) with the parameters given by (15).

Now for the ''if'' part. Let X have (3) or (3a) with a=-1. Then we have

 $p_{j+1}/p_{j} = (j-1-n) / (b-n+j), j=1,2,..., m-1.$ from which we get

$$\sum_{j=k+1}^{m} j p_{j} / \sum_{m=k+1}^{m} p_{j} = (b-n-1+bk) / (b-1), k=0,...,m-1$$

which in turn yields (4) with $\alpha=(b-n-1)/(b-1)$ and $\beta=b/(b-1)$. Hence the ''if'' part is proved.

REFERENCES

KEMP, C.D. and KEMP, A.W. (1956): Generalized Hypergeometric Distributions. <u>J.Rov. Stat. Soc.</u> Ser B, <u>18</u>, 202-11.

SRIVASTAVA, R.C.(1979): Two Characterizations of the Geometric Distribution By Record Values. Sankhya Ser.B, 40, 276-8.

DATE ILMED